Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Soo Yei Ho and Edward R. T. Tiekink*

Department of Chemistry, National University of Singapore, Singapore 117543

Correspondence e-mail: chmtert@nus.edu.sg

Key indicators

Single-crystal X-ray study
$T=208 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.028$
$w R$ factor $=0.068$
Data-to-parameter ratio $=25.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(O-Ethyldithiocarbonato)[tris(p-methoxyphenyl)phosphine]gold(I)

The Au atom in the title compound, $\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PAu}-$ $\left(\mathrm{S}_{2} \mathrm{COEt}\right)$ or $\left[\mathrm{Au}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OS}_{2}\right)\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}\right)\right]$, exists in a linear geometry, such that the $\mathrm{Au}-\mathrm{S}$ bond length is 2.3004 (8) \AA and $\mathrm{Au}-\mathrm{P}$ is 2.2505 (7) \AA, and the angle at gold is 175.87 (3) ${ }^{\circ}$.

Comment

Dithiocarbonate (i.e. xanthate or ${ }^{-} \mathrm{S}_{2} \mathrm{COR}$) ligands invariably coordinate to the metal centre in their phosphinegold(I) complexes via one of the S atoms, thereby leading to a linear $\mathrm{P}-\mathrm{Au}-\mathrm{S}$ arrangement (Tiekink, 1985; Siasios \& Tiekink, 1992, 1993a,b). Weak intramolecular Au $\cdots X$ associations are also present and these can involve either the second S atom or the O atom. The requirements of efficient crystal packing are thought to play a major role in determining the nature of the weaker intramolecular interactions to Au in these complexes. In this context, the molecular structure of $\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3^{-}}$ $\mathrm{PAu}\left(\mathrm{S}_{2} \mathrm{COEt}\right)$, (I) (Fig. 1 and Table 1), was investigated. The Au atom exists within a linear geometry $\left[175.87(3)^{\circ}\right]$ defined by $\mathrm{S}[2.3004$ (8) \AA] and $\mathrm{P}[2.2505$ (7) \AA] donor atoms. The orientation of the xanthate ligand is such that the S 2 atom is in close proximity $[3.4239(11) \AA$] to the Au atom, as is normally found in these systems. The dihedral angles formed between pairs of aromatic rings are $59.01(14), 86.03(14)$ and $77.46(14)^{\circ}$. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and weaker $\mathrm{O} / \mathrm{S} \cdots \mathrm{H}$ contacts. Each of the aromatic rings appears to be involved in a $\mathrm{C}-\mathrm{H} \cdots \pi$ contact. $\mathrm{C} 17-\mathrm{H} 17 \mathrm{C}$ is $2.94 \AA$ from the centroid of $\mathrm{C} 4^{\mathrm{i}}-\mathrm{C} 9^{\mathrm{i}}$ with an angle at H17C of 163° [symmetry code: (i) $1-x, y, \frac{1}{2}-z$], $\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$ is $2.92 \AA$ from the centroid of $\mathrm{C} 11^{\mathrm{ii}}-\mathrm{C} 16^{\mathrm{ii}}$ with an angle of 156° at $\mathrm{H} 10 B$ [symmetry code: (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$], and C3-H3 A is $2.97 \AA$ from the centroid of $\mathrm{C} 18^{\mathrm{iii}}-\mathrm{C} 23^{\mathrm{iii}}$ with an angle of 154° at $\mathrm{H} 3 A$ [symmetry code: (iii) $-\frac{1}{2}+x, \frac{1}{2}-y$, $\left.-\frac{1}{2}+z\right]$.

(I)

Experimental

The title compound was prepared in 65% yield from the reaction between $\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PAuCl}$ (Ho \& Tiekink, 2001) and $\mathrm{K}\left[\mathrm{S}_{2} \mathrm{COEt}\right]$, using established procedures (Tiekink, 1985). Yellow crystals were obtained from the vapour diffusion of diethyl ether into a chloroform solution of the compound; m.p. 409-410 K. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.48-$ $7.28(m, 6 H), 6.98-6.95(m, 6 H), 4.54(q, 2 H, J=7.1 \mathrm{~Hz}), 3.84(s, 9 H)$,

Received 17 December 2002 Accepted 23 December 2002 Online 10 January 2003

Figure 1
The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
1.39 p.p.m. $(t, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 33.7$ p.p.m. ESI-MS: $m / z=902\left[\left\{\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right\}_{2} \mathrm{Au}\right]^{+}$and $1220 \quad[\{(p-$ $\left.\left.\mathrm{MeOC}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{Au}_{2}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\right]^{+}$. IR (KBr): 1182 ($\nu \mathrm{C}-\mathrm{O}$) and $1047 \mathrm{~cm}^{-1}(\nu \mathrm{C}-\mathrm{S})$.

Crystal data

$\left.\left[\mathrm{AuC}_{3} \mathrm{H}_{5} \mathrm{OS}_{2}\right)\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}\right)\right]$	$D_{x}=1.780 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=670.50$
Mo $K \alpha$ radiation	
Monoclinic, $C 2 / c$	Cell parameters from 7220
$a=14.7524(8) \AA$	reflections
$b=15.2702(8) \AA$	$\theta=2.3-29.4^{\circ}$
$c=22.7615(14) \AA$	$\mu=6.14 \mathrm{~mm}^{-1}$
$\beta=102.634(2)^{\circ}$	$T=208(2) \mathrm{K}$
$V=5003.4(5) \AA^{3}$	Block, yellow
$Z=8$	$0.29 \times 0.26 \times 0.12 \mathrm{~mm}$
Data collection	
Bruker AXS SMART CCD	7255 independent reflections
\quad diffractometer	5989 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.039$
Absorption correction: multi-scan	$\theta_{\text {max }}=30.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2000)	$h=-14 \rightarrow 20$
$\quad T_{\text {min }}=0.232, T_{\text {max }}=0.479$	$k=-21 \rightarrow 19$
20818 measured reflections	$l=-31 \rightarrow 31$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.068$
$S=1.00$
7255 reflections
289 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0316 P)^{2}\right]$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.15 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\min }=-0.80 \mathrm{e}^{-3}$
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Au}-\mathrm{P} 1$	$2.2505(7)$	$\mathrm{P} 1-\mathrm{C} 11$	$1.805(3)$
$\mathrm{Au}-\mathrm{S} 1$	$2.3004(8)$	$\mathrm{P} 1-\mathrm{C} 18$	$1.808(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.724(3)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.331(3)$
$\mathrm{S} 2-\mathrm{C} 1$	$1.650(3)$	$\mathrm{O} 1-\mathrm{C} 2$	$1.449(4)$
$\mathrm{P} 1-\mathrm{C} 4$	$1.810(3)$		
$\mathrm{P} 1-\mathrm{Au}-\mathrm{S} 1$	$175.87(3)$	$\mathrm{Au}-\mathrm{P} 1-\mathrm{C} 11$	$112.51(10)$
$\mathrm{Au}-\mathrm{S} 1-\mathrm{C} 1$	$104.25(10)$	$\mathrm{Au}-\mathrm{P} 1-\mathrm{C} 18$	$113.85(9)$
$\mathrm{C} 4-\mathrm{P} 1-\mathrm{C} 11$	$107.44(13)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2$	$119.1(3)$
$\mathrm{C} 4-\mathrm{P} 1-\mathrm{C} 18$	$104.06(13)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$127.03(17)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 18$	$105.69(12)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{O} 1$	$108.9(2)$
$\mathrm{Au}-\mathrm{P} 1-\mathrm{C} 4$	$112.62(9)$	$\mathrm{S} 2-\mathrm{C} 1-\mathrm{O} 1$	$124.1(2)$

H atoms were placed in calculated positions and included in the final refinement in the riding-model approximation. The residual electron-density peak was located in the vicinity of the Au atom.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT and SHELXTL (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHEXLTL.

The National University of Singapore is thanked for the award of a research grant (R-143-000-139-112).

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bruker (2000). SMART, SAINT and SHELXTL (Versions V5.6) and $S A D A B S$ (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Ho, S. Y. \& Tiekink, E. R. T. (2001). Acta Cryst. E57, m549-m550.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siasios, G. \& Tiekink, E. R. T. (1992). Z. Kristallogr. 198, 139-141.
Siasios, G. \& Tiekink, E. R. T. (1993a). Z. Kristallogr. 199, 95-105.
Siasios, G. \& Tiekink, E. R. T. (1993b). Z. Kristallogr. 199, 261-270.
Tiekink, E. R. T. (1985). Z. Kristallogr. 173, 243-247.

